
Solutions for Selected Exercises

Frank M. Carrano
University of Rhode Island

Timothy M. Henry
New England Institute of Technology

Charles Hoot
Oklahoma City University

Please send comments or errors to carrano@acm.org or timhenry@acm.org

Version 5.2, © 2019 Pearson Education, Inc. All rights reserved.

mailto:carrano@acm.org?subject=DSAJ%20Solutions%20to%20Exercises%205.0
mailto:timhenry@acm.org?subject=DSAJ%20Solutions%20to%20Exercises%205.0

Contents
(Click on any entry below to locate the solutions for that chapter.)

Prelude: Designing Classes 3
Chapter 1: Bags 5
Chapter 2: Bag Implementations That Use Arrays 9
Chapter 3: A Bag Implementation That Links Data 17
Chapter 4: The Efficiency of Algorithms 26
Chapter 5: Stacks 33
Chapter 6: Stack Implementations 37
Chapter 7: Queues, Deques, and Priority Queues 42
Chapter 8: Queue, Deque, and Priority Queue Implementations 49
Chapter 9: Recursion 56
Chapter 10: Lists 71
Chapter 11: List Implementations That Use Arrays 76
Chapter 12: A List Implementation That Links Data 83
Chapter 13: Iterators for the ADT List 94
Chapter 14: Problem Solving with Recursion 102
Chapter 15: An Introduction to Sorting 107
Chapter 16: Faster Sorting Methods 116
Chapter 17: Sorted Lists 122
Chapter 18: Inheritance and Lists 130
Chapter 19: Searching 133
Chapter 20: Dictionaries 141
Chapter 21: Dictionary Implementations 151
Chapter 22: Introducing Hashing 163
Chapter 23: Hashing as a Dictionary Implementation 168
Chapter 24: Trees 172
Chapter 25: Tree Implementations 180
Chapter 26: A Binary Search Tree Implementation 191
Chapter 27: A Heap Implementation 201
Chapter 28: Balanced Search Trees 206
Chapter 29: Graphs 214
Chapter 30: Graph Implementations 220

!2

Prelude: Designing Classes

1. Consider the interface NameInterface defined in Segment P.13. We provided comments for only two of the
methods. Write comments in javadoc style for each of the other methods.

/** Sets the first and last names.
 @param firstName A string that is the desired first name.
 @param lastName A string that is the desired last name. */
public void setName(String firstName, String lastName);

/** Gets the full name.
 @return A string containing the first and last names. */
public String getName();

/** Sets the first name.
 @param firstName A string that is the desired first name. */
public void setFirst(String firstName);

/** Gets the first name.
 @return A string containing the first name. */
public String getFirst();

/** Sets the last name.
 @param lastName A string that is the desired last name. */
public void setLast(String lastName);

/** Gets the last name.
 @return A string containing the last name. */
public String getLast();

/** Changes the last name of the given Name object to the last name of this Name object.
 @param aName A given Name object whose last name is to be changed. */

public void giveLastNameTo(NameInterface aName);

/** Gets the full name.
 @return A string containing the first and last names. */

public String toString();

2. Consider the class Circle and the interface Circular, as given in Segments P.16 and P17.
a. Is the client or the method setRadius responsible for ensuring that the circle’s radius is positive?
b. Write a precondition and a postcondition for the method setRadius.
c. Write comments for the method setRadius in a style suitable for javadoc.
d. Revise the method setRadius and its precondition and postcondition to change the responsibility mentioned

in your answer to Part a.
a. The client is responsible for guaranteeing that the argument to the setRadius method is positive.
b. Precondition: newRadius >= 0. Postcondition: The radius has been set to newRadius.
c. /** Sets the radius.
 @param newRadius A non-negative real number. */

d. Precondition: newRadius is the radius. Postcondition: The radius has been set to newRadius if newRadius
>= 0.

 /** Sets the radius.
 @param newRadius A real number.
 @throws ArithmeticException if newRadius < 0. */

 public void setRadius(double newRadius) throws ArithmeticException
 {
 if (newRadius < 0)
 throw new ArithmeticException("Radius was negative");
 else
 radius = newRadius;
 } // end setRadius

!3

3. Write a CRC card and a class diagram for a proposed class called Counter. An object of this class will be used
to count things, so it will record a count that is a nonnegative whole number. Include methods to set the counter
to a given integer, to increase the count by 1, and to decrease the count by 1. Also include a method that returns
the current count as an integer, a method toString that returns the current count as a string suitable for display
on the screen, and a method that tests whether the current count is zero.

4. Suppose you want to design software for a restaurant. Give use cases for placing an order and settling the

bill. Identify a list of possible classes. Pick two of these classes, and write CRC cards for them.

System: Orders
Use case: Place an Order
Actor: Waitress
Steps:
1.Waitress starts a new order.
2.The waitress enters a table number.
3.Waitress chooses a menu item and adds it to the order.
 a. If there are more items, return to step 3.
4. The order is forwarded to the kitchen.

System: Orders
Use case: Settle Bill
Actor: Cashier
Steps:
1. The cashier enters the order id.
2. The system displays the total.
3. The customer makes a payment to the cashier.
4. The system computes any change due.
5. The cashier gives the customer a receipt.

Possible classes for this system are: Restaurant, Waitress, Cashier, Menu, MenuItem, Order, OrderItem, and
Payment.

Counter

Responsibilities
 Set the counter to a value
 Add 1 to the counter
 Subtract 1 from the counter
 Get the value of the counter as an integer
 Get the value of the counter as a string
 Test whether the counter is zero

Collaborations

!4

Counter

-count: integer

+setCounter(theCount:integer): void
+incrementCount(): void
+decrementCount(): void
+getCurrentCount(): integer
+toString(): String
+isZero(): boolean

Chapter 1: Bags

1. Specify each method of the class PiggyBank, as given in Listing 1-3, by stating the method’s purpose; by
describing its parameters; and by writing preconditions, postconditions, and a pseudocode version of its
header. Then write a Java interface for these methods that includes javadoc-style comments.

Purpose: Adds a given coin to this piggy bank.
Parameter: aCoin - a given coin
Precondition: None.
Postcondition: Either the coin has been added to the bank and the method returns true,
 or the method returns false because the coin could not be added to the bank.
public boolean add(aCoin)

Purpose: Removes a coin from this piggy bank.
Precondition: None.
Postcondition: The method returns either the removed coin or null in case the bank
 was empty before the method began execution.
public Coin remove()

Purpose: Detects whether this piggy bank is empty.
Precondition: None.
Postcondition: The method returns either true if the bank is empty or
 false if it is not empty.
public boolean isEmpty()

/**
 An interface that describes the operations of a piggy bank.
 @author Frank M. Carrano
 @version 4.0
*/
public interface PiggyBankInterface
{
 /** Adds a given coin to this piggy bank.
 @param aCoin A given coin.
 @return Either true if the coin has been added to the bank,
 or false if it has not been added. */

 public boolean add(Coin aCoin);

 /** Removes a coin from this piggy bank.
 @return Either true if a coin has been removed from the bank,
 or false if it has not been removed. */

 public Coin remove();

 /** Detects whether this piggy bank is empty.
 @return Either true if the bank is empty, or false if it not empty. */
 public boolean isEmpty();
} // end PiggyBankInterface

2. Suppose that groceryBag is a bag filled to its capacity with 10 strings that name various groceries. Write Java
statements that remove and count all occurrences of "soup" in groceryBag. Do not remove any other strings from
the bag. Report the number of times that "soup" occurred in the bag. Accommodate the possibility that
groceryBag does not contain any occurrence of "soup".

int soupCount = 0;
while (bag.remove("soup"))
 soupCount++;
System.out.println("Removed " + soupCount + " cans of soup.");

!5

3. Given groceryBag, as described in Exercise 2, what effect does the operation groceryBag.toArray() have on
groceryBag?

No effect; groceryBag is unchanged by the operation.

4. Given groceryBag, as described in Exercise 2, write some Java statements that create an array of the distinct
strings that are in this bag. That is, if "soup" occurs three times in groceryBag, it should only appear once in
your array. After you have finished creating this array, the contents of groceryBag should be unchanged.

Object[] items = groceryBag.toArray();
BagInterface<String> tempBag = new Bag<>(items.length);
for (Object anItem: items)
{
 String aString = anItem.toString();
 if (!tempBag.contains(aString))
 tempBag.add(aString);
} // end for

items = tempBag.toArray();

5. The union of two collections consists of their contents combined into a new collection. Add a method union to
the interface BagInterface for the ADT bag that returns as a new bag the union of the bag receiving the call to
the method and the bag that is the method’s one argument. Include sufficient comments to fully specify the
method.

Note that the union of two bags might contain duplicate items. For example, if object x occurs five times in one
bag and twice in another, the union of these bags contains x seven times. Specifically, suppose that bag1 and bag2 are
Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2 contains
the String objects b, b, d, and e. After the statement

BagInterface<String> everything = bag1.union(bag2);

executes, the bag everything contains the strings a, b, b, b, c, d, and e. Note that union does not affect the contents of
bag1 and bag2.

/** Creates a new bag that combines the contents of this bag and a
 second given bag without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the union of the two bags. */

public BagInterface<T> union(BagInterface<T> anotherBag);

6. The intersection of two collections is a new collection of the entries that occur in both collections. That is, it
contains the overlapping entries. Add a method intersection to the interface BagInterface for the ADT bag
that returns as a new bag the intersection of the bag receiving the call to the method and the bag that is the
method’s one argument. Include sufficient comments to fully specify the method.

Note that the intersection of two bags might contain duplicate items. For example, if object x occurs five times in
one bag and twice in another, the intersection of these bags contains x twice. Specifically, suppose that bag1 and bag2
are Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2
contains the String objects b, b, d, and e. After the statement

BagInterface<String> commonItems = bag1.intersection(bag2);

executes, the bag commonItems contains only the string b. If b had occurred in bag1 twice, commonItems would have
contained two occurrences of b, since bag2 also contains two occurrences of b. Note that intersection does not
affect the contents of bag1 and bag2.

/** Creates a new bag that contains those objects that occur in both this
 bag and a second given bag without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the intersection of the two bags. */

public BagInterface<T> intersection(BagInterface<T> anotherBag);

!6

7. The difference of two collections is a new collection of the entries that would be left in one collection after
removing those that also occur in the second. Add a method difference to the interface BagInterface for the
ADT bag that returns as a new bag the difference of the bag receiving the call to the method and the bag that is
the method’s one argument. Include sufficient comments to fully specify the method.

Note that the difference of two bags might contain duplicate items. For example, if object x occurs five times in
one bag and twice in another, the difference of these bags contains x three times. Specifically, suppose that bag1 and
bag2 are Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2
contains the String objects b, b, d, and e. After the statement

BagInterface leftOver1 = bag1.difference(bag2);

executes, the bag leftOver1 contains the strings a and c. After the statement

BagInterface leftOver2 = bag2.difference(bag1);

executes, the bag leftOver2 contains the strings b, d, and e. Note that difference does not affect the contents of
bag1 and bag2.

/** Creates a new bag of objects that would be left in this bag
 after removing those that also occur in a second given bag
 without affecting the original two bags.
 @param anotherBag The given bag.
 @return A bag that is the difference of the two bags. */
public BagInterface<T> difference(BagInterface<T> anotherBag);

8. Write code that accomplishes the following tasks: Consider two bags that can hold strings. One bag is named
letters and contains several one-letter strings. The other bag is empty and is named vowels. One at a time,
remove a string from letters. If the string contains a vowel, place it into the bag vowels; otherwise, discard the
string. After you have checked all of the strings in letters, report the number of vowels in the bag vowels and the
number of times each vowel appears in the bag.

BagInterface<String> allVowels = new Bag<>();
allVowels.add("a");
allVowels.add("e");
allVowels.add("i");
allVowels.add("o");
allVowels.add("u");
BagInterface<String> vowels = new Bag<>();

while (!letters.isEmpty())
{
 String aLetter = letters.remove();
 if (allVowels.contains(aLetter))
 vowels.add(aLetter);
} // end while

System.out.println("There are " + vowels.getCurrentSize() + " vowels in the bag.");
String[] vowelsArray = {"a", "e", "i", "o", "u"};
for (int index = 0; index < vowelsArray.length; index++)
{
 int count = vowels.getFrequencyOf(vowelsArray[index]);
 System.out.println(vowelsArray[index] + " occurs " + count + " times.");
} // end for

!7

9. Write code that accomplishes the following tasks: Consider three bags that can hold strings. One bag is named
letters and contains several one-letter strings. Another bag is named vowels and contains five strings, one for
each vowel. The third bag is empty and is named consonants. One at a time, remove a string from letters.
Check whether the string is in the bag vowels. If it is, discard the string. Otherwise, place it into the bag
consonants. After you have checked all of the strings in letters, report the number of consonants in the bag
consonants and the number of times each consonant appears in the bag.

while (!letters.isEmpty())
{
 String aLetter = letters.remove();
 if (!vowels.contains(aLetter))
 consonants.add(aLetter);
} // end while

System.out.println("There are " + consonants.getCurrentSize() +
 " consonants in the bag.");
final String[] CONSONANTS = {"a", "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",
 "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"};
for (int index = 0; index < CONSONANTS.length; index++)
{
 int count = consonants.getFrequencyOf(CONSONANTS[index]);
 System.out.println(CONSONANTS[index] + " occurs " + count + " times.");
} // end for

!8

