Instructor's Guide

Understanding Motor Controls, 4E Stephen L. Herman

Table of Contents

Section I	Basic Control Circuits and Components	
Chapter 1	General Principles of Motor Control	1
Chapter 2	Symbols and Schematic Diagrams	1
Chapter 3	Manual Starters	2
Chapter 4	Overload Relays	2
Chapter 5	Relays, Contactors, and Motor Starters	3
Chapter 6	The Control Transformer	4
Section II	Basic Control Circuits	
Chapter 7	Start–Stop Push button Control	5
Chapter 8	Multiple Push button Stations	5
Chapter 9	Forward–Reverse Control	7
Chapter 10	Jogging and Inching	7
Chapter 11	Timing Relays	8
Chapter 12	Sequence Control	8
Section III	Sensing Devices	
Chapter 13	Pressure Switches and Sensors	10
Chapter 14	Float Switches and Liquid Level Sensors	10
Chapter 15	Flow Switches	11
Chapter 16	Limit Switches	11
Chapter 17	Temperature-Sensing Devices	11
Chapter 18	Hall Effect Sensors	12
Chapter 19	Proximity Detectors	12
Chapter 20	Photodetectors	13
Chapter 21	Reading Large Schematic Diagrams	13
Chapter 22	Installing Control Systems	14
Section IV	Starting and Braking Methods	
Chapter 23	Across-the-Line Starting	15
Chapter 24	Resistor and Reactor Starting for AC Motors	15
Chapter 25	Autotransformer Starting	16
Chapter 26	Wye-Delta Starting	16
Chapter 27	Part Winding Starting	17
Chapter 28	Direct Current Motors	17
Chapter 29	Single-Phase Motors	18
Chapter 30	Braking	18
Section V	Wound Rotor, Synchronous, and Consequent Pole Motors	
Chapter 31	Wound Rotor Motors	20
Chapter 32	Synchronous Motors	21
Chapter 33	Consequent Pole Motors	21

Chapter 33 Consequent Pole Motors

Section VI	Variable Speed Drives	
Chapter 34	Variable Voltage and Magnetic Clutches	23
Chapter 35	Solid State DC Motor Controls	23
Chapter 36	Variable Frequency Control	24
Section VII	Motor Installation	
Chapter 37	Motor Installation	25
Section VIII	Programmable Logic Controllers	
Chapter 38	Programmable Logic Controllers	27
Chapter 39	Programming a PLC	27
Chapter 40	Analog Sensing for Programmable Logic Controllers	28
Section IX	Developing Control Circuits and Troubleshooting	
Chapter 41	Developing Control Circuits	29
Chapter 42	Troubleshooting	30
Chapter 43	Direct Drives and Pulley Drives	30
Chapter 44	Semiconductors	31
Chapter 45	The PN Junction	31
Chapter 46	The Zener Diode	32
Chapter 47	Light-Emitting-Diodes and Photodiodes	32
Chapter 48	The Transistor	32
Chapter 49	The Unijunction Transistor	33
Chapter 50	The SCR	33
Chapter 51	The DIAC	33
Chapter 52	The TRIAC	33
Chapter 53	The 555 Timer	34
Chapter 54	The Operational Amplifier	34
Section X	Laboratory Exercises	
Exercise 1	Basic Control	35
Exercise 2	Start–Stop Push Button Control	35
Exercise 3	Multiple Push Button Stations	36
Exercise 4	Forward–Reverse Control	36
Exercise 5	Sequence Control	36
Exercise 6	Jogging Controls	36
Exercise 7	On-Delay Timers	37
Exercise 8	Off-Delay Timers	37
Exercise 9	Designing a Printing Press Circuit	38
Exercise 10	Sequence Starting and Stopping for Three Motors	38
Exercise 11	Hydraulic Press Control	38
Exercise 12	Design of Two Flashing Lights	39
Exercise 13	Design of Three Flashing Lights	39
Exercise 14	Control for Three Pumps	39
Exercise 15	Oil Pressure Pump Circuit for a Compressor	41
Exercise 16	Autotransformer Starter	42

Basic Control Circuits and Components

CHAPTER 1 GENERAL PRINCIPLES OF MOTOR CONTROL

Objectives

- State the purpose and general principles of motor control.
- Discuss the differences between manual and automatic motor control.
- Discuss considerations when installing motors or control equipment.
- Discuss the basic functions of a control system.
- Discuss surge protection for control systems.

Answers to Review Questions

- 1. a. Is the motor single-phase or three-phase?
 - b. What is motor horsepower?
 - c. Must the in-rush current be reduced?
 - d. Is the present power system capable of handling the new installation?
- 2. On the motor nameplate
- 3. No. It may become law if made so by a local authority.
- 4. Manual control is characterized by the fact that the operator must go to the location of the controller to perform some change of action in the control system. Semiautomatic control uses magnetic contactors and starters, and other pilot devices to control the operation of the motor. The operator must initiate certain actions in the control system. Automatic control also uses devices similar to semiautomatic control, but once set by the operator, the control circuit continues to operate without further operator assistance.
- 5. Across-the-line starting
- 6. Jogging is accomplished by applying power in short jabs at full voltage. Inching is accomplished by applying power in short jabs at reduced voltage.
- 7. Variable frequency control
- 8. OSHA
- 9. To permit the motor to accelerate to its full speed over some period of time
- 10. Safety—to provide protection for the operator or other persons in the vicinity of the machine.

CHAPTER 2 SYMBOLS AND SCHEMATIC DIAGRAMS

Objectives

- Discuss symbols used in the drawing of schematic diagrams.
- Determine the difference between switches that are drawn normally open, normally closed, normally open held closed, and normally closed held open.
- Draw standard NEMA control symbols.
- State rules that apply to schematic or ladder diagrams.
- Interpret the logic of simple ladder diagrams.

SECTION X

Laboratory Exercises

EXERCISE 1 BASIC CONTROL

Procedure #1

- 6. No. The lamps should be turned off.
- 8. Yes. The relay should have energized and turned on both lamps.
- 15. Yes. One lamp should be turned on and one turned off.
- 17. Yes.

Procedure #2

24. The amber lamp should be turned on and the red and green lamps should be turned off. 26. The red and green lamps should be turned on and the amber lamp should be turned off.

Procedure #3

34. No, the motor should not start.

36. Yes, the motor should have starter running.

Answers to Review Questions

- 1. 2 sets
- 2. The coil
- 3. 2 and 7
- 4. 2 and 10
- 5. Normally closed
- 6. 1 and 3, 6 and 7, and 11 and 9

EXERCISE 2 START-STOP PUSH BUTTON CONTROL

Answers to Review Questions

- 1. When the start button is pressed, the motor will start. When the start button is released, the motor will stop.
- 2. 1. No incoming three-phase power
 - 2. Control transformer fuse is blown.
 - 3. Control transformer is bad.
 - 4. Stop push button is open.
 - 5. Start button is not making connection.
 - 6. M coil is open.
 - 7. The normally open overload contact is open.
- 3. A motor starter is a contactor that is connected to an overload relay. A contactor is not connected to an overload relay. Both the motor starter and contactor contain load contacts.
- 4. M coil is shorted.